SYLLABUS FOR
M.D. RADIOLOGY
SYLLABUS AND POST GRADUATE TRAINING PROGRAMME FOR M.D. RADIO DIAGNOSIS

Peramble:
Our purpose is to standardize Radio diagnosis teaching at Post Graduate level so that it will benefit in Achieving uniformity in undergraduate teaching as well and resultantly creating competent Radiologist with appropriate expertise.

Program Objectives:
The objectives is to train a student to become a skilled and competent Radiologist to conduct and interpret various diagnostic / interventional imaging studies (both conventional and advanced imaging), to organize and conduct research and teaching activities and be well versed with medical ethics and legal aspects of imaging / intervention.

Specific learning Objectives:
A Resident on completing his / her MD (Radio Diagnosis)
1. Acquir good basic knowledge in the various sub – specialties of Radiology such as Neuroradiology, GI radiology, Uroradiology, Vascular Radiology, Musculokeletal, Interventional Radiology, Emergency Radiology, Paediatric Radiology and Imaging of breast
2. Independently conduct and interpret all routine and special radiolocia and imaging investigations.
3. Provide radiological services in acute emergency an trauma including its medicolegal aspects.
4. Elicit indications, diagnostic features and limitations of applications of ultrasound, CT and MRI and should be able to describe proper cost effective algorithm of various imaging techniques in a given problem setting.

SYLLABUS FOR M.D. – AUDIO DIAGNOSIS
Part – I Medical Radiation Physics as applied to Radio – Diagnosis

1. Basic concepts:
 Radiation and atom – Electromagnetic radiation – Structure of atom – Atomicnucleus – Radioactivity – Nuclear fission and fusion

2. Production of X-rays:
 X – ray production – X – ray tubes – Tube rating charts – Interaction of electron with target Intensity and quality of x-ray beams

3. Interaction of radiation with matter:
 Particle interaction – photon interaction – coherent scattering photoelectric effect – Compton scattering – pair production – their relative importance.

 Attenuation – Attenuation coefficient – Factors affecting attenuation – Applications to Diagnostic Radiology
4. Radiography:
 Film screen radiography – Cassettes – Intensifying Screens – Radiographic film – Digital
 Radiography – Scattered radiation – Methods to reduce scattered radiation – Grid characteristics
 – Grid artifacts – Moving grids – Air gaps – Filters – Cones and Cylinders – Collimators
 Radiographic image quality – contrast – Noise – Spatial resolution

5. Fluoroscopy:
 General principle – Real time imaging – positioning – Fluoroscopic equipment optical coupling
 – photospot cameras – spotfilm – cineradiography

6. Special radiography:
 Stereo radiography – Conventional tomography – Digital subtraction angiography –
 Mammography – Recent developments in Radiography.
 Computed Tomography – Basic principles – Historical developments – CT generators- image
 acquisition – Reconstruction techniques – Artifacts – Display.

7. Modern Imaging systems:
 Ultrasound – Basic principles – production of ultrasound – Interaction of Ultrasound with
 matter – images acquisition – image quality – Artifacts – Doppler ultrasound – Biological safety
 Magnetic Resonance Imaging – Basic principles – Image acquisition – Reconstruction
 techniques – image characteristics – Artifacts – MRI instrumentation – Biological safety.

8. Nuclear Medicine:
 Radioactivity – Radionuclide production – Radiopharmaceuticals – Radiation detector s-
 Thyroid probe – Well counter – Dose calibrator – Counting Statistics
 Nuclear imaging – Augar scintillation camera – computers in Nuclear imaging.
 Nuclear tomography – single photon emission computer tomography positron emission
 tomography – Recent advances

9. Radiation Biology:
 Biological effects of Radiation – Interaction of radiatioj with tissue – Cellular Radio – Biology –
 Response of organs to radiation – Acute radiation syndrome – Radiationa induced

10. Radiation protection
 Natural radiation – Occupational exposures – Personnel dosimetry – Film badge – TLD pocket
dosimeter – Area monitoring survey meters – Contraol of radiation – Time, distance shielding –
Protective barrier specifcaatin – Workload, use factor, Occupancy factor – Planning diagnostic
and Nuclear Medicine departments.

 Guidelines for safe work practice – Regulatory agencies – Atomic energy regulatory agencies –
Atomic energy regulatory board – Radiation protection rules in India – ICRP Recommendations
– Dose equivalent limits – Recent concepts.
Part II

Radiology – Course contents:
1. Musculo – skeletal system
2. Respiratory system
3. Cardiovascular system
4. Gastrointestinal system
5. Urogenital tract
6. CNS including Spine
7. Imaging of Obstetrics & Gynecology
8. ENT, EYES, Teeth, Soft tissue, Breast
9. Endocrine System
10. Clinically applied Radio – Nuclide imaging
11. Contrast agents

Training in different organ systems:

Various Diseases involving the following systems (A student should have adequate knowledge of procedures and interpretation of all conventional and advanced imaging techniques and interventions whenever needed)
1. Musculo skeletal system – Interpretation of disease of muscles, soft tissue, bones and joints including congenital, inflammatory, traumatic, metabolic and endocrine neoplastic and miscellaneous conditions.
3. Cardiovascular system – Diseases and disorders of the cardiovascular system (Congenital and acquired condition) and the role of imaging by conventional radiology, ultrasound, color Doppler, CT, MRI, Angiography and Isotope studies.
4. Gastrointestinal tract and Hepato – biliary pancreatic system – Diseases and disorders of mouth, pharynx, salivary glands, esophagus, stomach, small intestine, large intestine, diseases of omentum, peritoneum and mesentery, acute abdomen, abdominal trauma. Disease and disorders of Hepato – biliary pancreatic system.
5. Urogenital system – various diseases and disorders of Genito – Urinary system including congenital, inflammatory, traumatic, neoplastic, calculus disease and miscellaneous, degenerative, metabolic conditions.
6. Central Nervous system including imaging (conventional and newer methods) and Interpretation of various diseases and disorders of the head, neck and spine Covering congenital, infective, Vascular, Traumatic, neoplastic, degenerative, Metabolic and miscellaneous condition.
8. Radiology of Obstetric and Gynecology
9. Evaluation of Breast by imaging and interventions
10. ENT, Eyes and teeth
11. Endocrine glands
13. Interventional Radiology related to different systems of body.
M.D. – RADIO DIAGNOSIS
TRAINING PROGRAMME

Three Year Courses :

First Year :

Basic Physics, Medical Physics, General Radiology, 12 months
Ultrasound & CT concurrently

Second Year :

General Radiology 5 months
Ultrasonogram 2 months
C.T. Scan 2 months
MRI 1
Nuclear Medicine 1 month
Intervention 1 month

Third Year

General Radiology 2 months
Ultrasonogram 1 month
C.T. Scan 2 months
MRI 2 months
Nuclear Medicine (PET) 1 month
Elective (Obst and Gyn.) 1 month
Elective Paediatric 1 month
Intervention 2 months
During the three years course, the student will work in the following areas

<table>
<thead>
<tr>
<th></th>
<th>Area</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conventional Chest</td>
<td>3 months</td>
</tr>
<tr>
<td>2</td>
<td>Conventional Musculoskeletal including skull, spine, PNS</td>
<td>3 months</td>
</tr>
<tr>
<td>3</td>
<td>Genito urinary system</td>
<td>2 months</td>
</tr>
<tr>
<td>4</td>
<td>Gastro Intestinal system</td>
<td>3 months</td>
</tr>
<tr>
<td>5</td>
<td>US including Doppler</td>
<td>6 months</td>
</tr>
<tr>
<td>6</td>
<td>CT (Body + Head – 3 months each)</td>
<td>6 months</td>
</tr>
<tr>
<td>7</td>
<td>Emergency Radiolgy</td>
<td>2 months</td>
</tr>
<tr>
<td>8</td>
<td>MRI</td>
<td>4 months</td>
</tr>
<tr>
<td>9</td>
<td>Interventional Radiology including Aniography</td>
<td>3 months</td>
</tr>
<tr>
<td>10</td>
<td>Nuclear Medicine including PET Scan</td>
<td>1 months</td>
</tr>
<tr>
<td>11</td>
<td>Elective Posting (O & G, Paediatrics)</td>
<td>2 + 1 month</td>
</tr>
</tbody>
</table>

PROPOSED SCHEDULE FOR ROTATION OF RESIDENTS

<table>
<thead>
<tr>
<th>Year</th>
<th>Rotation</th>
<th>Chest 1</th>
<th>Chest 2</th>
<th>Musculo Skeletal 1</th>
<th>Musculo Skeletal 2</th>
<th>GU 1</th>
<th>GU 2</th>
<th>Ultrasound 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>(1/6)</td>
<td>Chest</td>
<td>Chest</td>
<td>Muscle Skeletal</td>
<td>Muscle Skeletal</td>
<td>GU</td>
<td>GU</td>
<td>Ultrasound</td>
</tr>
<tr>
<td></td>
<td>(2/6)</td>
<td>Ultrasound</td>
<td>CT (Head)</td>
<td>CT (Body)</td>
<td>GIT</td>
<td>GIT</td>
<td>Ultrasound</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>(3/6)</td>
<td>Chest</td>
<td>Muscle Skeletal</td>
<td>Muscle Skeletal</td>
<td>GIT</td>
<td>Emergency Radiology</td>
<td>CT (Head)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4/6)</td>
<td>CT (Body)</td>
<td>Ultrasound</td>
<td>Intervention</td>
<td>Ultrasound</td>
<td>MRI</td>
<td>Nuclear Medicine</td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>(5/6)</td>
<td>CT (Head)</td>
<td>MRI</td>
<td>PET</td>
<td>Intervention</td>
<td>MRI</td>
<td>CT (Body)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6/6)</td>
<td>MRI</td>
<td>Emergency Radiology</td>
<td>Intervention</td>
<td>Ultrasound</td>
<td>Elective (Obst & Gynec)</td>
<td>Elective (Paediatrics)</td>
<td></td>
</tr>
</tbody>
</table>
a) Theory

Part – I

Paper I – Medical Radiation Physics as applied to Radio Diagnosis
(Basic concepts, Production of x- rays, Interaction of radiation with matter, Radiography, Fluoroscopy, Special radiography, Modern imaging systems, Nuclear Medicine, Radiation Biology and Radiation Protection)

Part – II

Paper – I – Radio Diagnosis including imaging Breast
(Cardiovascular System, Respiratory System, Gastro intestinal including Hepato biliary, Endocrine, Chest and Breast)

Paper – II – Radio Diagnosis including Interventional Radiology (Genitourinary, Retroperitoneum, CNS including Head, Nech & Spine, Musculoskeletal, O & G, ENT and interventional Radiology)

Paper – III – Radio Diagnosis including Nuclear Medicine (Recent Advances, Nuclear Medicine and Radiology related to Clinicl Specialties)

b) practicals :

A) One Long and Two Short cases
B) Practical and Viva
 I. Spot film diagnosis (40 – 50)
 II. Techniques
 III. Implements / Contrast media
 IV. Nuclear Medicine
SCHEME OF EXAMINATION

Part – I – (at the end of First year)

<table>
<thead>
<tr>
<th>Theory</th>
<th>Tile of the paper</th>
<th>Duration in hours</th>
<th>maximum marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper – I</td>
<td>Medical Radiation Physics as applied to Radio Diagnosis (Basic concepts, Production of x-rays, interaction of radiation with matter, Radiography, Fluoroscopy, Special radiography, Modern Imaging Systems, Nuclear Medicine, Radiation Biology and Radiation Protection)</td>
<td>3 Hours</td>
<td>100</td>
</tr>
</tbody>
</table>

Part – II (Final) – (at the end of Third year)

<table>
<thead>
<tr>
<th>Theory</th>
<th>Tile of the paper</th>
<th>Duration in hours</th>
<th>Maximum marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper I -</td>
<td>Radio Diagnosis including Breast (Cardiovascular System, Respiratory System, Gastro intestinal System, including Hepato biliary, endocrine, Chest, Breast)</td>
<td>3 Hours</td>
<td>100</td>
</tr>
<tr>
<td>Paper – II – Radio Diagnosis including interventional Radiology</td>
<td>3 Hrs.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Paper – III</td>
<td>Radio Diagnosis including Nuclear Medicine (Recent Advances, Nuclear Medicine and Radiology related to clinical specialities)</td>
<td>3 Hours</td>
<td>100</td>
</tr>
</tbody>
</table>

Clinical Examination:

<table>
<thead>
<tr>
<th>No. of Cases</th>
<th>Duration</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Case</td>
<td>1 X 90</td>
<td>1 Hours</td>
</tr>
<tr>
<td>Short Cases</td>
<td>3 X 30</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Communication Skill</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Total 200

Oral Examination:

Instruments	20
Contast	20
Viva	40
Log Book	20

Total 100
Marks Qualifying for a pass:

1. 50% of marks in the university theory examinations - 150 / 300
2. 50% of marks in the university clinical examinations - 100 / 200
3. Viva Voce - 100
4. Aggregate of 2 & 3 - 150 / 300

Total - 600

(maximum number of candidates to be examined per day – 6) -

Recommended List of Books and Journals

Text Books:

2. Diagnostic Radiology – Graninger & Allison
3. Diagnostic ultrasound – volume I & II – Rumack Carol, M
4. Cranial MRI and CT – Lee S. Howard
5. CT and MR Imaging of the whole body – Haaga
7. Chest Roentgenology – Felson Benjamin
8. Radiology of the Chest – Armstrong
9. HRCt of the Lung – Richard Webb
10. Introduction to Vascular Ultrasonography – Zweibel, W.J.
11. Ultrasound in Obstetrics & Gynecology – Peter W. Callen
12. Diagnostic Neuroradiology – Anne G. Osborn
14. Clarke’s Positioning in Radiology : R.A. Swallow et al
15. Fetal & Paediatric USG – Cohen
16. Applied Radiological Anatomy – Butler
17. Applied Radiological Anatomy – Butler
18. Clinical Doppler Ultrasonography – Paul L. Allen
Theory: Four papers of 3 hours each.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Titles</th>
<th>Duration</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper I</td>
<td>Basic Sciences in Dermatology, Venerology & Leprosy</td>
<td>3 hrs.</td>
<td>100</td>
</tr>
<tr>
<td>Part II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper I</td>
<td>General & Tropical Dermatology including Venereology, Leprosy & their Social Public Health & Preventive Aspects</td>
<td>3 hrs.</td>
<td>100</td>
</tr>
<tr>
<td>Paper II</td>
<td>Dermatology including skin Manifestations of Systemic Diseases & Therapeutics</td>
<td>3 hrs.</td>
<td>100</td>
</tr>
<tr>
<td>Paper III</td>
<td>Recent Advances in Dermatology, Venerology & Leprosy</td>
<td>3 hrs.</td>
<td>100</td>
</tr>
</tbody>
</table>

DDVL
Theory: Three papers of 3 hours each.

Part – I

1. Basic Sciences in relation to Dermatology, Venereology and Leprosy.

Part - II

1. Principles of Dermatology Diagnosis and Therapeutics
2. Venereology and Leprosy